
ELF: Event Logging  Facility file:///CI/My Documents/ELF/oopsla99-designfest.html 

A Flight/GroundTest  Event  Logging  Facility 
Daniel Dvorak 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Drive 
Pasadena, CA 91 109-8099 

phone: 818-393-1986 
email: daniel.dvorak@jpl.nasa.gov 

Problem  Description 

Domain  Description 

The onboard control software for spacecraft such as Mars Pathfinder and Cassini is composed of many subsystems including 
executive control, navigation, attitude control, imaging, data management, and telecommunications. The software in all of these 
subsystems needs  to  be instrumented for several purposes: to report required telemetry data, to report warning and error events, 
to  verify internal behavior during system testing, and to provide  ground operators with detailed data when investigating in-flight 
anomalies. Events can range in importance from purely informational events to major errors. It is desirable to provide a uniform 
mechanism for reporting such events and controlling their subsequent processing. 

Since radiation-hardened flight processors are several years  behind the speed and memory of their commercial cousins, and 
since most subsystems require real-time control, and since downlink rates to earth can be very  low from deep space, there are 
limits to  how  much of the data can  be saved and transmitted. Some kinds of events are more important than others and  should 
therefore be preferentially retained when  memory is low. Some faults can cause an event to recur at a high rate, but  this  must  not 
be  allowed  to consume the memory pool. Some event occurrences may  be  of  low importance when reported but suddenly 
become  more important when a subsequent error event gets reported. Some events may be so low-level that they  need  not  be 
saved and reported unless specifically requested by ground operators. 

The  Desired  Program 

Your  task  is  to design an object-oriented event logging facility (ELF) that spacecraft programmers will use to instrument flight 
code, that ground operators will control during mission operations to select different levels of visibility, and  that  system  test 
tools will connect to in order to audit test results. Every event will  be signaled with  an associated time stamp, event identifier, 
and event severity. Some types of events may include additional event-specific data. Any single event may or may  not  be 
recorded for subsequent downlink to earth based on an  "entry policy" that  is sensitive to event type, severity, ID, frequency, and 
available memory. The tunable parameters of all policies (defined in the next section) will be controlled via  ground commands. 
The interface for signaling the occurrence of  an event must incur minimal overhead when the entry policy is set to  discard the 
event. All event data must  be  handled  in a typesafe manner. 

You  may assume that a "data transport" subsystem exists for uplinking commands from ground to spacecraft and for 
downlinking data from spacecraft to ground. However, understand  that earth-spacecraft communication may be infrequent (once 
a week), slow (tens of bits per second), and  non interactive (round-trip delay from earth to Saturn is about N hours). 

. You  may also assume that a "data management" subsystem exists for saving "data products" such as events and  making  them 
available to  other subsystems (such as data transport). 

Detailed  Requirements & Definitions 
0 Definition. An event is any noteworthy state, as determined by a system engineer or designer or developer. For example, 

a bus  voltage  below 22 volts or a memory  pool  over  98% full might be considered noteworthy states. 
0 Definition. An event is  said  to  have occurred (in a software sense) when it is detected in a conditional statement and can 

3/19/99 6:12 PM 

file:///CI/My
mailto:daniel.dvorak@jpl.nasa.gov


ELF:  Event  Logging  Facility  file:///CI/My Documents/ELF/oopsla99-designfest.html 

2of3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

therefore be acted upon. 
Definition. An event occurrence is said to have  been signaled to  Elf  when  an appropriate Elf signaling function has  been 
called. 
Definition. A signaled event is said  to have been logged if an event record is created, submitted to Data Management, 
and accepted. 
Definition. A data  product is a data structure to be stored and transported by Data Management. ("Data Management" is 
the name  of a subsystem.) 
Definition. An event  object is an data product containing information describing the occurrence of a particular event. 
Definition. An event  type or event  class is a data  type  that specifies the kinds of data that describe an event occurrence. 
Requirement. All event object must contain a time stamp, event identifier, and event severity. An event object may 
contain additional user-defined information as  an instance of a user-defined event type. 
Definition. An event  identifier is a label for a kind  of event. (An event identifier is useful in distinguishing among 
different kinds of events that use the same event type.) 
Definition. An event severity is a measure of the level of importance of an event occurrence. 
Requirement. The contents of an event object must  be structured and  strongly typed so that downstream processing  can 
access the contents in a type safe manner. 
Requirement. Elf  must define a signaling interface whereby an event occurrence is signaled with the information  needed 
to construct an event object. 
Requirement. Elf  must define interfaces for controlling entry policy, retention policy, and reporting policy. It  must  be 
possible to change the tunable parameters of a policy at run-time without recompilation. 
Definition. An entry policy controls what  signaled events are logged. As an example, a policy may control entry based 
on event type, event severity, event identifier, frequency of event occurrences, and equality to the previous event. 
Definition. A retention policy controls how  long a logged event is retained. As an example, a policy might depend on 
factors such as age and number of currently retained events. 
Definition. A reporting policy specifies how event objects may  be grouped into a report. For example, the logging of a 
severity "red" event of type X could  be a trigger to report the last five minutes  of events of types Y and Z .  
Requirement. A user  who defines a new event class must  have the option to use a default system-defined policy or to 
define a class-specific policy. This requirement applies to entry policy, retention policy, and reporting policy. 
Requirement. It  must  be possible to change an entry policy at runtime, i.e., no source code changes and no 
recompilations. 
Requirement. For reasons of runtime efficiency in high-performance applications, at least one of the signaling interfaces 
must be designed for speed in ignoring disabled events. 
Requirement. Elf  must support at least three levels of event severity: a "green" level for purely informational events, a 
"yellow" level for warnings, and a "red" level for errors. (The names "red", "yellow", and "green" are merely suggestive, 
not required.) 
Requirement. It should be possible to include with a logged event the source location where it was signaled. This helps 
distinguish between events that otherwise have the same identifier, same type, and same severity. 
Desideratum. Since brevity is a virtue  to  most programmers, Elf should provide at least one signaling interface for basic 
events that can be written in a compact form. The intent of this requirement is to make it easy to instrument an 
application's source code, particularly during early design and debugging. 

Non  Requirements 
1. Non requirement. There is no limit on the number of event types that may  be defined. 
2. Non requirement. There is no requirement for a signaling interface that can be conditionally compiled down  to  zero 

run-time overhead, Le., compiled out of existence. 
3. Non requirement. The preceding requirements deliberately do not prescribe whether and  how exceptions might  be  used 

to signal error events. Users  who  wish  to  use exceptions may do so, and  could (for example) define an error event 
hierarchy derived from the base event class so that a catcher could specify how broad of a class of error events it can 
handle. Naturally, each subsystem can define its own error hierarchy, independent of other subsystems, so there's  no  need 
for a standard hierarchy. Likewise, the choice of whether  or  not  to use exceptions can be  made on a subsystem basis. 

3/19/99  6:12 PM 

file:///CI/My


ELF: Evmt Logging Facility file:///Cwy Documents/ELF/oopsla99-designfest.html 

4. Non requirement. There is no requirement for Elf  to maintain statistics such as the number of times that an event 
condition has been checked. 
Non requirement. There is no requirement for Elf to provide a way to force the occurrence of an event, such  as for 
testing purposes. 

Use  Cases 
1. A programmer defines an application-specific event class. 
2. A programmer instruments source code to signal an event if it occurs. 
3. A running application program signals occurrence of an event. 
4. Data management accepts an event object for logging. 
5. An Elf signaling mechanism checks the appropriate entry policy. 
6. A ground operator adjusts the tunable parameters of a specific policy. 

References  for  Further  Study 
0 I'll  try to find a published article on the Mars Pathfinder event reporting facility (but it was based on macros for a 

non-00 C environment). 
0 (I welcome suggestions for other relevant articles.) 

If you have comments or suggestions, email me  at clnrziel.dvor-uk~iI:ul.iln,sa.,gov 

3/19/99 6:12 PM 

file:///Cwy

